Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 45(10): 913-920, Oct. 2012. ilus
Article in English | LILACS | ID: lil-647752

ABSTRACT

The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.


Subject(s)
Animals , Cricetinae , Female , Humans , Cytoplasm/metabolism , Gene Products, tat/metabolism , Leukemia Inhibitory Factor Receptor alpha Subunit/metabolism , Chromatography, Affinity , Cell Differentiation/genetics , Cytoplasm/genetics , Electrophoresis, Polyacrylamide Gel , Genetic Vectors , Gene Products, tat/genetics , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Transfection
2.
J Genet ; 2007 Aug; 86(2): 93-101
Article in English | IMSEAR | ID: sea-114314

ABSTRACT

A cytoplasmic male sterile (CMS) line of Brassica juncea was derived by repeated backcrossing of the somatic hybrid (Diplotaxis catholica + B. juncea) to B. juncea. The new CMS line is comparable to euplasmic lines for almost all characters, except for flowers which bear slender, needle-like anthers with aborted pollen. Detailed Southern analysis revealed two copies of coxI gene in the CMS line. One copy, coxI-1 is similar to the coxI gene of B. juncea, whereas the second copy, coxI-2 is present in a novel rearranged region. Northern analysis with eight mitochondrial gene probes showed altered transcript pattern only for the coxI gene. Two transcripts of 2.0 and 2.4 kb, respectively, were detected in the CMS line. The novel 2.4 kb transcript was present in floral bud tissue but absent in the leaf tissue. In plants where male sterility broke down under high temperature during the later part of the growing season, the 2.4 kb coxI transcript was absent, which suggested its association with the CMS. The two coxI genes from the CMS line showed two amino acid changes in the coding region. The novel coxI gene showed unique repeats in the 5' region suggesting recombination of mitochondrial genomes of the two species. The possible role of the duplicated coxI gene in causing male sterility is discussed.


Subject(s)
Base Sequence , Brassica/genetics , Cyclooxygenase 1/genetics , Cytoplasm/genetics , DNA, Mitochondrial/analysis , Flowers/genetics , Gene Duplication , Gene Expression , Genome, Plant , Hybrid Cells/metabolism , Molecular Sequence Data , Mustard Plant/genetics , Plant Infertility/genetics , RNA/analysis , Random Amplified Polymorphic DNA Technique , Sequence Homology, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL